On fractional correlation immunity of majority functions
نویسنده
چکیده
The correlation immunity is known as an important cryptographic measure of a Boolean function with respect to its resist against the correlation attack. This paper generalizes the concept of correlation immunity to be of a fractional value, called fractional correlation immunity, which is a fraction between 0 and 1, and correlation immune function is the extreme case when the fractional correlation immunity is 1. However when a function is not correlation immune in the traditional sense, it may also has a nonzero fractional correlation immunity, which also indicates the resistance of the function against correlation attack. This paper first shows how this generalized concept of fractional correlation immunity is a reasonable measure on the resistance against the correlation attack, then studies the fractional correlation immunity of a special class of Boolean functions, i.e. majority functions, of which the subset of symmetric ones have been proved to have highest algebraic immunity. This paper shows that all the majority functions, including the symmetric ones and the non-symmetric ones, are not correlation immune. However their fractional correlation immunity approaches to 1 when the number of variable grows. This means that this class of functions also have good resistance against correlation attack, although they are not correlation immune in the traditional sense.
منابع مشابه
On a subclass of multivalent analytic functions associated with an extended fractional differintegral operator
Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملStudy on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
متن کاملHYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009